ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Yoshiyuki Kataoka, Michio Murase, Tadashi Fujii, Kenji Tominaga
Nuclear Technology | Volume 111 | Number 2 | August 1995 | Pages 241-250
Technical Paper | Nuclear Criticality Safety Special / Fission Reactor | doi.org/10.13182/NT95-A35133
Articles are hosted by Taylor and Francis Online.
An external water wall type containment cooling system is one of the passive containment cooling systems that use no active components and are intended for system simplification in the next generation power reactors. The core decay heat during a postulated loss-of-coolant accident is accumulated in the suppression pool (SP) and transferred to the outer pool, which is a cooling pool located outside and adjacent to the SP, by only natural phenomena such as natural convection, heat conduction, and evaporation. The temperature profiles and the convection heat transfer coefficients in the pools were measured using a 5-m height apparatus. The formation of a thermal stratification boundary at the vent outlets, which restricts the effective heat transfer area between pools, was clarified, and a correlation for natural convection heat transfer coefficients was obtained. Condensation heat transfer coefficients on the containment vessel wall and evaporation heat transfer coefficients on the SP surface under a noncondensable gas presence, which strongly affected the heat removal from the wet well, were evaluated based on the test results, and the correlations were obtained. The heat removal evaluation models, which analyze the trends of the temperatures and pressure, were developed and verified with system tests. As for the improvement of heat removal capability, two methods were proposed. One is a baffle plate to mitigate thermal stratification in the SP and enlarge the effective heat transfer area between pools. The second method is a divided wet well to avoid noncondensable gas effects. The thermal-hydraulic behavior in the SP with a baffle plate was clarified by three-dimensional analysis, and the effectiveness of these methods was experimentally confirmed.