ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
M. J. Plaster, B. Basoglu, C. L. Bentley, M. E. Dunn, A. E. Ruggles, A. D. Wilkinson, T. Yamamoto, H. L. Dodds
Nuclear Technology | Volume 111 | Number 2 | August 1995 | Pages 219-226
Technical Paper | Nuclear Criticality Safety Special / Nuclear Criticality Safety | doi.org/10.13182/NT95-A35131
Articles are hosted by Taylor and Francis Online.
A hypothetical nuclear criticality accident in a waste supercompactor is examined. The material being compressed in the compactor is a homogeneous mixture of beryllium and 239Pu. The point-kinetics equations with simple thermal-hydraulic feedback are used to model the transient behavior of the system. A lumped-parameter energy balance is used to determine the bulk temperature of the system. A computer code has been developed to solve the model equations. The computer code calculates the fission power history, fission yield, bulk temperature of the system, and several other thermal-hydraulic parameters of interest. Calculations have been performed for the waste supercompactor for various material misloading configurations. The peak power for the various accident scenarios varies from 1.04 × 1017 to 4.85 × 1020 fissions per second (fps). The total yield varies from 8.21 × 1017 to 7.73 × 1018 fissions, and the bulk temperature of the system varies from 412 to >912 K.