ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
M. J. Plaster, B. Basoglu, C. L. Bentley, M. E. Dunn, A. E. Ruggles, A. D. Wilkinson, T. Yamamoto, H. L. Dodds
Nuclear Technology | Volume 111 | Number 2 | August 1995 | Pages 219-226
Technical Paper | Nuclear Criticality Safety Special / Nuclear Criticality Safety | doi.org/10.13182/NT95-A35131
Articles are hosted by Taylor and Francis Online.
A hypothetical nuclear criticality accident in a waste supercompactor is examined. The material being compressed in the compactor is a homogeneous mixture of beryllium and 239Pu. The point-kinetics equations with simple thermal-hydraulic feedback are used to model the transient behavior of the system. A lumped-parameter energy balance is used to determine the bulk temperature of the system. A computer code has been developed to solve the model equations. The computer code calculates the fission power history, fission yield, bulk temperature of the system, and several other thermal-hydraulic parameters of interest. Calculations have been performed for the waste supercompactor for various material misloading configurations. The peak power for the various accident scenarios varies from 1.04 × 1017 to 4.85 × 1020 fissions per second (fps). The total yield varies from 8.21 × 1017 to 7.73 × 1018 fissions, and the bulk temperature of the system varies from 412 to >912 K.