ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
Chris F. Haught, W. C. Jordan, B. Basoglu, R. W. Brewer, A. D. Wilkinson, H. L. Dodds
Nuclear Technology | Volume 111 | Number 2 | August 1995 | Pages 197-218
Technical Paper | Nuclear Criticality Safety Special / Nuclear Criticality Safety | doi.org/10.13182/NT95-A35130
Articles are hosted by Taylor and Francis Online.
A theoretical model is used to predict the consequences of a postulated hypothetical nuclear criticality excursion in a freezer/sublimer (F/S). Previous work has shown that an intrusion of water into a F/S may result in a critical configuration. A first attempt is made to model the neutronic and thermal-hydraulic phenomena occurring during a criticality excursion involving both uranium hexafluoride (UF6) and uranyl fluoride (UO2F2) solution, which is present in the F/S during upset conditions. The model employs point neutronics coupled with simple thermal hydraulics. Reactivity feedback from changes in the properties of the system are included in the model. The excursion is studied in a 10-MW F/S with an initial load of 3500 kg of 5% weight enriched UF6 and in a 20-MW F/S with an initial load of 6800 kg of 2% weight enriched UF6. The magnitude of the fission release determined in this work is 5.93 × 1018 fissions in the 10-MW F/S and 4.21 × 1018 fissions in the 20-MW F/S. In order to demonstrate the reliability of the techniques used in this work, a limited validation study was conducted by comparing the fission release and peak fission rate determined by this work with experimental results for a limited number of experiments. The agreement between calculations and experiments in the validation study is considered to be satisfactory. The calculational results for the hypothetical accidents in the two F/S vessels appear reasonable.