ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NEI chief executive highlights “unlimited potential” for nuclear in state of the industry address
Korsnick
In the Nuclear Energy Institute’s annual State of the Nuclear Energy Industry report, NEI president and CEO and Maria Korsnick expressed optimism about the nuclear industry and she issued a call to action.
Her address was part of NEI’s Nuclear Energy Policy forum. The forum, being held in Washington, D.C., on May 20 and May 21, brings together industry leaders, policy stakeholders, and clean energy experts to discuss nuclear advocacy. Korsnick’s remarks focused on the private capital flowing into the industry, progress on regulatory reform and new nuclear technology, and how the U.S. is trying to take the lead on the global nuclear stage.
“We are here at an unprecedented time in our industry history,” Korsnick said. “I’m proud to say that the nuclear industry has a future of unlimited potential.”
Hyung-Kook Joo, Jae-Man Noh, Jae-Woon Yoo, Jin-Young Cho, Sang-Yoon Park, Moon-Hee Chang
Nuclear Technology | Volume 147 | Number 1 | July 2004 | Pages 37-52
Technical Paper | Thoria-Urania NERI | doi.org/10.13182/NT03-30
Articles are hosted by Taylor and Francis Online.
Since the thorium-based fuel has many incentives including the reduction of plutonium generation and long-lived radiotoxic isotope production, the research on the use of thorium as a nuclear fuel for nuclear power reactors has been performed and will last for a long time. Focus is on the fuel economics of the thorium-based cycle for light water reactors (LWRs). Analyses show that the neutronic behavior of a mixed thorium and uranium dioxide (Th + U)O2 core in a pressurized water reactor (PWR) will not be significantly different from that of a UO2 core. This implies that homogeneous (Th + U)O2 fuel can be used in PWRs instead of the current UO2 fuel without any significant mechanical modification of the fuel design and without any change in the nuclear design limits. However, homogeneous (Th + U)O2 has not shown any economic advantage over UO2 fuel when current fuel management strategies are used. Thus, alternative applications of homogeneous (Th + U)O2 fuel in LWRs have been investigated to enhance the economics of the thorium fuel cycle. Specifically, thorium-uranium fuel with a 235U enrichment significantly <19.5 wt%, mixed cores of both duplex (Th + U)O2 and UO2 fuel assemblies, and use of homogeneous thorium-uranium fuel in small-to-medium PWRs with a 5-yr cycle length have been investigated. The proposed alternatives result in far better fuel economics than the homogeneous thorium-uranium fuel cycle. However, the proposed alternatives do not show the economic merit of thorium-based fuel options for existing LWRs as compared to the UO2 fuel option. However, the inclusion of spent-fuel disposal costs in the fuel cost estimate makes (Th + U)O2 fuel competitive with UO2 fuel. In the case of a spent-fuel disposal cost higher than 700 US$/kg HM, the long-lived core with better economic potential than the UO2-fueled core may be realized with the homogeneous (Th + U)O2 fuel.