ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Todd J. Urbatsch, R. Arthur Forster, Richard E. Prael, Richard J. Beckman
Nuclear Technology | Volume 111 | Number 2 | August 1995 | Pages 169-182
Technical Paper | Nuclear Criticality Safety Special / Fission Reactor | doi.org/10.13182/NT95-A35128
Articles are hosted by Taylor and Francis Online.
The Monte Carlo code MCNP has three different, but correlated, estimators for calculating keff in nuclear criticality calculations: collision, absorption, and track length estimators. The combination of these three estimators, the three-combined keff estimator, is shown to be the best keff estimator available in MCNP for estimating keff confidence intervals. Theoretically, the Gauss-Markov theorem provides a solid foundation for MCNP’s three-combined estimator. Analytically, a statistical study, where the estimates are drawn using a known covariance matrix, shows that the three-combined estimator is superior to the estimator with the smallest variance. Empirically, MCNP examples for several physical systems demonstrate the three-combined estimator’s superiority over each of the three individual estimators and its correct coverage rates. Additionally, the importance of MCNP’s statistical checks is demonstrated.