ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Leonardo Romero, Luis Moreno, Ivars Neretnieks
Nuclear Technology | Volume 110 | Number 2 | May 1995 | Pages 238-249
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT95-A35121
Articles are hosted by Taylor and Francis Online.
The evolution and formation of a redox front in the near field of a repository for high-level nuclear waste is modeled, considering the effect of a time-dependent source term of the oxidizing species produced by radiolysis of the water entering the canister. The transport of oxidants in the clay surrounding the canister occurs by diffusion. In the rock, the transport of oxidants is modeled as occurring through fractures, with diffusion into the rock matrix. The results show that it is not probable that the redox front will ever move past the bentonite. If it does, the tips of the redox front may move <100 m over a million year period in a channel with a high flow rate.