ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Eitan Wacholder, Ezra Elias, Yoram Merlis
Nuclear Technology | Volume 110 | Number 2 | May 1995 | Pages 228-237
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT95-A35120
Articles are hosted by Taylor and Francis Online.
An optimization artificial neural networks model is developed for solving the ill-posed inverse transport problem associated with localizing radioactive sources in a medium with known properties and dimensions. The model is based on the recurrent (or feedback) Hop-field network with fixed weights. The source distribution is determined based on the response of a limited number of external detectors of known spatial deployment in conjunction with a radiation transport model. The algorithm is tested and evaluated for a large number of simulated two-dimensional cases. Computations are carried out at different noise levels to account for statistical errors encountered in engineering applications. The sensitivity to noise is found to depend on the number of detectors and on their spatial deployment. A pretest empirical procedure is, therefore, suggested for determining an effective arrangement of detectors for a given problem.