ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Eitan Wacholder, Ezra Elias, Yoram Merlis
Nuclear Technology | Volume 110 | Number 2 | May 1995 | Pages 228-237
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT95-A35120
Articles are hosted by Taylor and Francis Online.
An optimization artificial neural networks model is developed for solving the ill-posed inverse transport problem associated with localizing radioactive sources in a medium with known properties and dimensions. The model is based on the recurrent (or feedback) Hop-field network with fixed weights. The source distribution is determined based on the response of a limited number of external detectors of known spatial deployment in conjunction with a radiation transport model. The algorithm is tested and evaluated for a large number of simulated two-dimensional cases. Computations are carried out at different noise levels to account for statistical errors encountered in engineering applications. The sensitivity to noise is found to depend on the number of detectors and on their spatial deployment. A pretest empirical procedure is, therefore, suggested for determining an effective arrangement of detectors for a given problem.