ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Yair bartal, Jie Lin, Robert E. Uhrig
Nuclear Technology | Volume 110 | Number 3 | June 1995 | Pages 436-449
Technical Paper | Actinide Burning and Transmutation Special / Reactor Control | doi.org/10.13182/NT95-A35112
Articles are hosted by Taylor and Francis Online.
A nuclear power plant’s (NPP’s) status is usually monitored by a human operator. Any classifier system used to enhance the operators capability to diagnose a safety-critical system like an NPP should classify a novel transient as “don’t-know” if it is not contained within its accumulated knowledge base. In particular, the classifier needs some kind of proximity measure between the new data and its training set. Artificial neural networks have been proposed as NPP classifiers, the most popular ones being the multilayered perceptron (MLP) type. However, MLPs do not have a proximity measure, while learning vector quantization, probabilistic neural networks (PNNs), and some others do. This proximity measure may also serve as an explanation to the classifier’s decision in the way that case-based-reasoning expert systems do. The capability of a PNN network as a classifier is demonstrated using simulator data for the three-loop 436-MW(electric) Westinghouse San Onofre unit I pressurized water reactor. A transient’s classification history is used in an “evidence accumulation” technique to enhance a classifier’s accuracy as well as its consistency.