ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Takashi Hibiki, Kaichiro Mishima, Masahito Matsubayashi
Nuclear Technology | Volume 110 | Number 3 | June 1995 | Pages 422-435
Technical Paper | Actinide Burning and Transmutation Special / Radiation Application | doi.org/10.13182/NT95-A35111
Articles are hosted by Taylor and Francis Online.
To apply the neutron radiography (NRG) technique to fluid research, high-frame-rate NRG with a steady thermal neutron beam was developed by gathering up-to-date technologies for neutron sources, scintillators, high-speed videos, and image intensifiers. This imaging system has many advantages such as a long recording time, high-frame-rate (up to 1000 frame/s) imaging, and no need for a triggering signal. Visualization of air-water two-phase flow in a metallic rectangular duct was achieved at the recording speeds of 250, 500, and 1000 frame/s. The qualities of those consecutive images were good enough to observe the flow mechanism and to measure the flow characteristics. It was demonstrated that some characteristics of two-phase flow could be measured by using the current imaging system. To quantify geometric information from NRG images, measurements of flow regime, rising velocity of bubbles and wave height, interfacial length, and interfacial area in annular flow were performed by using the image processing technique. To quantify attenuation characteristics of neutrons in materials, measurements of average void fraction and void profile were conducted. It was confirmed that this new technique may have significant advantages in both visualizing and measuring high-speed fluid phenomena when the ordinary methods such as the optical method and X-ray radiography cannot be applied.