ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Theodore H. Bauer, John W. Holland
Nuclear Technology | Volume 110 | Number 3 | June 1995 | Pages 407-421
Technical Paper | Actinide Burning and Transmutation Special / Nuclear Fuel Cycle | doi.org/10.13182/NT95-A35110
Articles are hosted by Taylor and Francis Online.
Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis is placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel.