ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Carl A. Beard, J. Wiley Davidson, Robert A. Krakowski, Morris E. Battat
Nuclear Technology | Volume 110 | Number 3 | June 1995 | Pages 321-356
Technical Paper | Actinide Burning and Transmutation Special / Nuclear Fuel Cycles | doi.org/10.13182/NT95-A35106
Articles are hosted by Taylor and Francis Online.
Transmutation of long-lived nuclear waste (trans-uranic actinides and long-lived fission products) currently stored in spent reactor fuels may represent an attractive alternative to deep geologic disposal. The aqueous-based accelerator transmutation of waste (ATW) concept as proposed by Los Alamos National Laboratory uses a proton accelerator to produce a 1.6-GeV, 250-mA (∼400 MW) beam that is split four ways and directed to four D2O-cooled solid tungsten-lead composite targets. Each target in turn is centered in a heavy water moderated, highly multiplying, actinide (oxide)-slurry blanket. High thermal-neutron fluxes are produced that allow high transmutation reaction rates at low material (actinide, long-lived fission product) inventories. The target-blanket system for ATW resides at an interface separating two major systems that are crucial to the economic and technical success of the concept: (a) the high-energy (power-intensive) accelerator delivering 0.8 to 1.6 GeV protons to the high-Z spallation neutron source and (b) the chemical-plant equipment (CPE) that provides feedstock appropriate for efficient and effective transmutation. Parametric studies have been performed to assess the effects of the target-blanket on overall system performance with regard to neutron economy, chemical-processing efficiency, and thermal-hydraulic design options. Based on these parametric evaluations, an interim base-case aqueous-slurry ATW design was selected for more detailed analyses. This base-case target-blanket consists of an array of Zr-Nb pressure tubes placed in a heavy water moderator surrounding a heavy-water-cooled tungsten-lead target. Neutronics and thermal-hydraulic calculations focusing primarily on the blanket indicate that each of the four ATW target-blanket modules operating with a neutron multiplication keff = 0.95 can transmute the actinide waste and the technetium and iodine waste from ∼ 2.5 light water reactors (LWRs). In addition, by recovering and converting the fission heat, sufficient electricity can be produced both to operate the accelerator and to supply power to the grid for revenue generation; the full (400-MW beam) system would service ∼ 10 LWRs, which at 835 MW(thermal)/ LWR (1363 mol/yr actinide), a thermal-to-electric conversion efficiency of 0.30, and an overall “wall-plug” accelerator efficiency of 0.50 would allow about two-thirds of the 2500-MW(electric) (gross) power to be delivered to the grid. The neutronics-, thermal-hydraulics-, and accelerator-CPE-interface consideration, needed to ensure this performance, is examined for the aqueous-slurry ATW. These broad-based parametric studies have provided guidance to a preliminary conceptual engineering design of the aqueous-slurry ATW blanket concept.