ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
James A. Turso, Robert M. Edwards, Jose March-Leuba
Nuclear Technology | Volume 110 | Number 1 | April 1995 | Pages 132-144
Nuclear Reactor Safety | Burnup Credit | doi.org/10.13182/NT95-A35102
Articles are hosted by Taylor and Francis Online.
A “hybrid” reactor /simulation (HRS) testing arrangement has been developed and experimentally verified using The Pennsylvania State University (Penn State) TRIGA Reactor. The HRS uses actual plant components to supply key parameters to a digital simulation (and vice versa). To implement the HRS on the Penn State TRIGA reactor, an experimental or secondary control rod drive mechanism is used to introduce reactivity feedback effects that are characteristic of a boiling water reactor (BWR). The simulation portion of the HRS provides a means for introducing reactivity feedback caused by voiding via a reduced order thermal-hydraulic model. With the model bifurcation parameter set to the critical value, the nonlinearity caused by the neutronic-simulated thermal/hydraulic coupling of the hybrid system is evident upon attaining a limit cycle, thereby verifying that these effects are indeed present. The shape and frequency of oscillation (∼0.4 Hz) of the limit cycles obtained with the HRS are similar to those observed in operating commercial BWRs. A control or diagnostic system specifically designed to accommodate (or detect) this type of anomaly can be experimentally verified using the research reactor based HRS.