ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kenneth R. Olson, Douglass L. Henderson, Michael L. Woosley, Jr., William C. Sailor
Nuclear Technology | Volume 110 | Number 1 | April 1995 | Pages 115-131
Fission Reactor | Burnup Credit | doi.org/10.13182/NT95-A35101
Articles are hosted by Taylor and Francis Online.
The possibility of an unstable positive reactivity growth in an accelerator transmutation of waste (ATW)-type highr-flux system is investigated. While it has always been clear that xenon is an important actor in the reactivity response of a system to flux changes, it has been suggested that in very high thermal flux transuranic burning systems, a positive, unstable reactivity growth could be caused by the actinides alone. Initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately. The maximum change in reactivity after a flux change caused by the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or startup. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response caused by the actinides. The capabilities and applications of both the current actinide model and the xenon model are discussed. Finally, the need for a complete dynamic model for the high-flux fluid-fueled ATW system is addressed.