ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Christofer M. Mowry, Israel Nir
Nuclear Technology | Volume 109 | Number 3 | March 1995 | Pages 412-428
Technical Paper | Reactor Control | doi.org/10.13182/NT95-A35089
Articles are hosted by Taylor and Francis Online.
Boiling water reactor cores are susceptible to instabilities, which generate power oscillations. Specific reactor operating practices can provide a mechanism for control of the instability phenomenon. An axial separation of the core into a single-phase region and a two-phase region resolves the influence of axial flux shapes on core stability. This separation provides the means to derive a core stability control that ensures significant reactor stability margin. The control is achieved by maintaining the core average bulk coolant saturation elevation above a predetermined axial plane. The control can be reliably and efficiently implemented during reactor operations. Analysis demonstrates that variations in parameters important to stability have only secondary influences on stability margin when the control is in effect. Actual plant experience with a large commercial boiling water reactor confirms the capabilities of this stability control in an operational setting.