ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Yuh-Ming Ferng, Bau-Shei Pei, Tuan-Ji Ding
Nuclear Technology | Volume 109 | Number 3 | March 1995 | Pages 398-411
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35088
Articles are hosted by Taylor and Francis Online.
During the past years, a number of reduced-scale test facilities have been constructed to investigate the physical phenomena of transients or accidents occurring in nuclear power plants. Since the behavior of a nuclear power plant is complicated, it is quite impossible for a small-scaled facility to simulate all the physical phenomena during the transient process. But, by way of proper scaling, most of the important aspects of transient behavior can be simulated. Calculations using RELAP5/MOD3 investigate whether most of the key thermal-hydraulic phenomena observed in the Institute of Nuclear Energy Research Integral System Test (IIST) facility can be expected in a prototype plant. When compared with experimental data, the calculated results of two different scale models show reasonable agreement with the natural circulation transients. The scale-up capability of RELAP5/MOD3 is demonstrated by simulating the single-phase and two-phase natural circulation transients. Also, the scaling distortions in the heat transfer areas of the IIST facility do not strongly distort the thermal-hydraulic behavior of experimental data.