ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Hilbert Christensen
Nuclear Technology | Volume 109 | Number 3 | March 1995 | Pages 373-382
Technical Paper | Material | doi.org/10.13182/NT95-A35086
Articles are hosted by Taylor and Francis Online.
The production of radiolytic species in a pressurized water reactor has been calculated for various initial hydrogen and boron concentrations. The concentration of oxidants decreases with increasing hydrogen concentration, but the decrease is <20% when [H2] is increased from 5 to 50 Ncm3/kg (N refers to normal conditions, i.e., 0°C, 1.013 bar). The concentration of oxidants is reduced ∼35% when the boron concentration is reduced from 340 to 0 ppm. The reduction is caused by a decrease in linear energy transfer (LET) of the mixed radiation. An increase in LET results in lower radical yields and higher molecular yields. For a hydrogen concentration of 15 Ncm3/kg and a boron concentration of 800 ppm, the highest H2O2 concentration —17 ppb —is found at the highest dose rate in the fuel channel. The highest oxygen concentration — 0.7ppb — is found at the entrance to the downcomer. The highest concentration —0.5 ppb —is found in the fuel channel. Of these species, may be expected to have the highest rate constant in oxidation processes. At a hydrogen concentration of 5 Ncm3/kg, the oxidant concentrations are only slightly higher than the preceding values. A decrease in hydrogen concentration is supposed to be beneficial in decreasing the risk of primary water stress corrosion cracking of the steam generator alloy 600 material.