ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hilbert Christensen
Nuclear Technology | Volume 109 | Number 3 | March 1995 | Pages 373-382
Technical Paper | Material | doi.org/10.13182/NT95-A35086
Articles are hosted by Taylor and Francis Online.
The production of radiolytic species in a pressurized water reactor has been calculated for various initial hydrogen and boron concentrations. The concentration of oxidants decreases with increasing hydrogen concentration, but the decrease is <20% when [H2] is increased from 5 to 50 Ncm3/kg (N refers to normal conditions, i.e., 0°C, 1.013 bar). The concentration of oxidants is reduced ∼35% when the boron concentration is reduced from 340 to 0 ppm. The reduction is caused by a decrease in linear energy transfer (LET) of the mixed radiation. An increase in LET results in lower radical yields and higher molecular yields. For a hydrogen concentration of 15 Ncm3/kg and a boron concentration of 800 ppm, the highest H2O2 concentration —17 ppb —is found at the highest dose rate in the fuel channel. The highest oxygen concentration — 0.7ppb — is found at the entrance to the downcomer. The highest concentration —0.5 ppb —is found in the fuel channel. Of these species, may be expected to have the highest rate constant in oxidation processes. At a hydrogen concentration of 5 Ncm3/kg, the oxidant concentrations are only slightly higher than the preceding values. A decrease in hydrogen concentration is supposed to be beneficial in decreasing the risk of primary water stress corrosion cracking of the steam generator alloy 600 material.