ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Yasushi Nomura, Hiroshi Okuno
Nuclear Technology | Volume 109 | Number 1 | January 1995 | Pages 142-152
Technical Paper | Nuclear Criticality Safety | doi.org/10.13182/NT95-A35074
Articles are hosted by Taylor and Francis Online.
For handling of nuclear fuel during reprocessing or for design of spent-fuel storage and transportation, one needs to know the scale of maximum credible criticality accidents, i.e., the total fission number so as to know the radiological exposure of working personnel as well as the risk to the public in the event of an accident. Some simplified evaluation models for conservatively predicting the number of total fissions during an accident are derived theoretically using the one-point adiabatic reactivity balance model for the homogeneous and heterogeneous systems, respectively, which are frequently seen in nuclear fuel facilities. These simplified evaluation models are subsequently validated with the transient experiment data and actual accident data published to date from the world nuclear community. Some conventionally used simplified evaluation models of this kind are quoted and compared with the results to show the convenience of the current models, having almost no restrictions in the application for any kind of nuclear fuel, material composition, geometry, and dimension, and thus, ensuring adequate margins for predicting the total fission number at the time of a critsssicality accident.