ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Motoo Fumizawa, Makoto Hishida
Nuclear Technology | Volume 109 | Number 1 | January 1995 | Pages 123-131
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35072
Articles are hosted by Taylor and Francis Online.
Air ingress by buoyancy-driven exchange flow occurs during a standpipe rupture accident in a high-temperature engineering test reactor (HTTR). The exchange flow of helium and air through annular and Round tubes is investigated. The method of mass increment is applied to measure the exchange flow rate. A test cylinder with a small tube on the top is used for the experiment. The following results were obtained: The exchange velocity is largest for the short vertical round tube as compared with the orifice and long tube. In the annular tube, the exchange-velocity or the volumetric exchange flow rate decreases with the equivalent diameter of the annular passage under 6 mm. The annular tube is effective to reduce the air ingress flow rate from the broken standpipe of the HTTR. In the inclined round tube, the inclination angle for the maximum densimetric Froude number decreases with the increase of the length-to-diameter ratio of the tube for the helium-air system. On the other hand, this angle remains almost constant for the water-brine system. Flow visualization results indicate that the exchange flows through the inclined round tubes take place smoothly and stably in the separated passage of the tube. The flow pattern in the vertical annular tube seems to be similar to that in the inclined round tube.