ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Constantine P. Tzanos
Nuclear Technology | Volume 109 | Number 1 | January 1995 | Pages 108-122
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35071
Articles are hosted by Taylor and Francis Online.
Turbulent airflows around structures are important in many engineering applications. Such flows can have a significant impact on the thermal performance of the reactor vessel auxiliary cooling system (RVACS) of advanced liquid-metal reactor designs. The adequacy of the high-Reynolds-number form of the k-∈ model in analyzing turbulent airflow around structures like the RVACS stacks is evaluated. An experiment of simulated atmospheric turbulent flow around a cube is analyzed with the computer code COMMIX, and numerical predictions for pressure and velocity distributions are compared with experimental measurements. Considering the complexity of the problem and the approximations involved in the k-∈ model, the overall agreement between numerical predictions and measurements of pressure coefficients and velocities is good. The largest discrepancies between predictions and measurements are in the pressure coefficient at the sections of the top and side cube surfaces very close to the upwind edges and in the spanwise velocity distribution downstream from the cube.