ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Arup K. Maji, Bruce Letellier, Kyle W. Ross, Daseri V. Rao, Luke Bartlein
Nuclear Technology | Volume 146 | Number 3 | June 2004 | Pages 279-289
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3506
Articles are hosted by Taylor and Francis Online.
This paper presents a comparison between computational fluid dynamics (CFD) analysis and experiments in order to help pressurized water reactor (PWR) plants develop a methodology for estimating the amount of insulation debris that may transport to the sump screens of an emergency core cooling system (ECCS). This information is essential for the resolution of Generic Safety Issue-191 on the safety margins of the ECCS systems subsequent to debris accumulation and head loss at the screen.Tests were carried out on a simulated containment floor in the laboratory to determine the flow velocities in which different types of objects including insulation debris would move along the floor. CFD analyses were independently carried out to determine the flow velocities in the containment under different flow rates and break locations. It was shown that the flow regimes predicted by the CFD analyses compare well with the experimentally observed movement along the floor. Based on this observation the transport fraction of different types of insulation debris can be estimated specific to any PWR plant.