ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Ali Uludogan, Michael L. Corradini
Nuclear Technology | Volume 109 | Number 2 | February 1995 | Pages 171-186
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT109-171
Articles are hosted by Taylor and Francis Online.
A theoretical model has been developed for molten metal/water interactions by using a semiempirical heat transfer correlation and a mass transfer analogy to predict the metal ignition threshold temperatures for aluminum and zirconium. The predictions of the aluminum and zirconium metal temperature responses are studied to identify self-propagating chemical reactions that lead to metal ignition for various metal particle sizes and initial temperatures. The results showed that the ignition of the aluminum metal is possible when the aluminum oxide layer remains in the liquid phase until the metal temperature reaches its oxide layer solidification temperature under highly transient conditions. For both metals, the ignition temperature increased with a larger size of the metal particle, with zirconium requiring qualitatively larger temperatures for ignitions. It was observed that the effect of the water temperature strongly depends on where the chemical reaction front may actually be located.