ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Vojislav Banjac, A. Sharif Heger
Nuclear Technology | Volume 108 | Number 1 | October 1994 | Pages 126-136
Technical Paper | Radiation Protection | doi.org/10.13182/NT94-A35048
Articles are hosted by Taylor and Francis Online.
A mass optimization study of the total shield mass requirementsfor gamma attenuation for a space nuclear power system is carried out. The reference system is a nuclear electric power-generating reactor with a 1016 γ/s source term and reference dimensions based on the Russian TOPAZ-II. Seven potential shield materials are analyzed, and the total gamma shield masses are presented for a desired dose equivalent of 5.0 mrem/h at the end of the shield. A three-dimensional shielding code, QAD-CGGP, is used to model the reactor and the truncated cone shield. Gamma energies of 0.5,1.0, and 2.0 MeV are analyzed, and the required shield masses are normalized to the lowest value, giving a “mass index.” Comparison of the required masses and mass indices for both direct radiation and buildup dose is presented. For all three gamma energies, depleted uranium has a mass index of 1.0 and provides the required shielding with the lowest mass requirement. Mass indices between 1.2 and 1.7 are characteristic of tungsten and lead, making them potential substitutes for depleted uranium in the case of smaller reactor power levels.