ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Hans-Peter Hermansson, Göran Persson, Anneli Reinvall
Nuclear Technology | Volume 108 | Number 1 | October 1994 | Pages 100-111
Technical Paper | Material | doi.org/10.13182/NT94-A35046
Articles are hosted by Taylor and Francis Online.
A series of studies on precoat filtration were carried out on condensate and preheater drains in the Swedish and Finnish boiling water reactors (BWRs). The goal was to increase knowledge about the precoat filtration process and to find physical and chemical means to improve the performance of the precoat filters in the condensate polishing plants. To achieve this goal a number of parameters, such as type of resin, bed depth, pH, oxygen and organic contaminant concentrations (measured total organic carbon), and corrosion product particle characteristics, were selected for the study. The work was mainly carried out in the power plants using an experimental facility fed with on-line sampled condensates and drains taken from the plant sampling lines. The main results are that there is a varying influence on precoat filtration from all the aforementioned parameters. The oxygen concentration, the concentration of organic contaminants, and the type of corrosion products are, however, the factors that have the strongest influence within the parameter ranges that are representative for BWR operation. The results are rather similar when the different units are compared. There are, however, some differences that could be mainly attributed to deviations in operation parameters and the subsequent differences in the corrosion product spectra. The mechanism for precoat filtration of corrosion products in BWR condensate is complex. The filtration behavior is to a large extent governed by competition between depth filtration and electrostatic interactions. During the early stages of the filtration cycle, electrostatic interaction is of great importance, whereas depth filtration becomes more important with increasing operating time. Rapid pressure drop buildup rates have been demonstrated to be caused by the presence of amorphous corrosion products. An effect from the presence of organic contaminants has been found although in practical operation this should be of little significance.