ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Cheng-Wei Wu, Douglass L. Henderson, Edgar F. Bennett
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 235-255
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT94-A35032
Articles are hosted by Taylor and Francis Online.
An innovative liquid-metal reactor, the Integral Fast Reactor (IFR), is being developed at Argonne National Laboratory. One characteristic of the IFR is the fuel cycle closure. Fissile material bred and fissionable material produced in the reactor are recycled back into the reactor. Waste generated during fuel reprocessing will be packaged into special waste canisters and will be shipped to a repository for final disposal. Prior to its removal from the facility, a measurement of the fissile content will be necessary as a part of an overall fissile material inventory accountability system. A particular form of nondestructive assay called delayed neutron nondestructive assay (DNNDA) is being developed to assist in the establishment of an accountability system. A preliminary neutronics investigation for the current DNNDA has been made to assist and verify the characteristics of the design from a neutronic aspect. A 1011 n/s, 14-MeV neutron source would provide adequate counting statistics for fissile material at the milligram to gram level.