ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Cheng-Wei Wu, Douglass L. Henderson, Edgar F. Bennett
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 235-255
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT94-A35032
Articles are hosted by Taylor and Francis Online.
An innovative liquid-metal reactor, the Integral Fast Reactor (IFR), is being developed at Argonne National Laboratory. One characteristic of the IFR is the fuel cycle closure. Fissile material bred and fissionable material produced in the reactor are recycled back into the reactor. Waste generated during fuel reprocessing will be packaged into special waste canisters and will be shipped to a repository for final disposal. Prior to its removal from the facility, a measurement of the fissile content will be necessary as a part of an overall fissile material inventory accountability system. A particular form of nondestructive assay called delayed neutron nondestructive assay (DNNDA) is being developed to assist in the establishment of an accountability system. A preliminary neutronics investigation for the current DNNDA has been made to assist and verify the characteristics of the design from a neutronic aspect. A 1011 n/s, 14-MeV neutron source would provide adequate counting statistics for fissile material at the milligram to gram level.