ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Paul A. Lessing, Ronald J. Heaps
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 207-234
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT94-A35031
Articles are hosted by Taylor and Francis Online.
A fuel design being developed for the high-temperature gas-cooled reactor consists of microspheres (particles) of a very small kernel of dense, sintered, enriched 235UCO encapsulated by several layers of pyrolytic carbon and a layer of silicon carbide (SiC). The coated fuel particles are often called TRISO® particles. The SiC is derived via thermal decomposition of methyltrichlorosilane. This strong, dense layer is very important to the integrity of the particle and the retention of fission products. A fundamental understanding of failure mechanisms of unirradiated fuel particles is elucidated by measuring their failure rates when exposed to mechanical stresses. This was accomplished by compression testing of whole particles in two modes: (a) point loading and (b) dimple loading. Finite element stress modeling showed that point loading primarily exposed a small portion of the inner surface of the SiC layer to a maximum tensile stress. Stress analysis for the dimple loading showed that a significant area (inner and outer surface) of the SiC layer and a large volume of the SiC layer were stressed to near-maximum tensile levels. Various batches of archived particles were tested. Weibull methodology was used for analyses of failure statistics for groups of 500 particles. A scanning electron microscope was used for fractography, which identified critical flaws that were the likely fracture origins. The following is concluded from the strength tests. First, the dimple test yielded much lower strengths and different Weibull distribution curves than those resulting from the point-load test. This was attributed to a higher probability of finding flaws due to exposing more and different portions of the SiC layers to high stresses. Therefore, Weibull failure probabilities from the dimple test should give a more accurate prediction of in-service failures than point-load tests. The dimple test gave consistent and reproducible results. Second, fractography indicated that strengths were controlled by flaws, which were identified and categorized. Third, gold-colored spots were linked to large lenticular flaws oriented circumferentially in the SiC layer. These flaws were associated with diffuse iron impurities and silicon and carbon soot. The spots did not greatly affect the medium and high portions of the strength distribution because of their orientation to the tensile stresses. However, there was evidence that large gold spots were associated with a low-strength dog leg at low failure probabilities, and testing a minimum number of 1000 particle/batch is recommended to increase the confidence in fitting this portion of the probability plot. Fourth, compacting did not greatly affect the overall strength distribution of performance test fuel particles. Finally, burn-back and hydrofluoric acid etching procedures appear to accentuate the deleterious effect of some flaws.