ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Yassin A. Hassan, Sibashis S. Banerjee
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 191-206
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35030
Articles are hosted by Taylor and Francis Online.
A simulation of the loss of residual heat removal (RHR) system during midloop operations was performed using the RELAP5/MOD3 thermal-hydraulic code. The experiment was conducted at the Rig of Safety Assessment (ROSA)-IV/Large-Scale Test Facility. The experiment involved a 5% cold-leg break along with the loss of the RHR system. The transient was simulated for 3040 s. Core boiling and subsequent primary system pressurization occurred after the initiation of the transient. There was a good agreement between the measured and the calculated data until the loop seal clearing (LSC). It was found that the steam condensation was underpredicted in the calculations. This caused the calculated data after the LSC to differ from that of the measured data. The core rod surface temperature excursion around the occurrence of the LSC was not calculated. Overall, there was good qualitative agreement between the measured and the calculated data. The calculations, performed on the CRAY-YMP supercomputer, took over 60 h of CPU time for a transient of 51 min.