ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New consortium to address industry need for nuclear heat and power
Hoping to tackle a growing global demand for energy, The Open Group, a vendor-neutral technology and standards membership organization, has announced the formation of the Industrial Advanced Nuclear Consortium (IANC) to collaborate on finding advanced nuclear energy solutions to serve industrial customers.
Yassin A. Hassan, Sibashis S. Banerjee
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 191-206
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35030
Articles are hosted by Taylor and Francis Online.
A simulation of the loss of residual heat removal (RHR) system during midloop operations was performed using the RELAP5/MOD3 thermal-hydraulic code. The experiment was conducted at the Rig of Safety Assessment (ROSA)-IV/Large-Scale Test Facility. The experiment involved a 5% cold-leg break along with the loss of the RHR system. The transient was simulated for 3040 s. Core boiling and subsequent primary system pressurization occurred after the initiation of the transient. There was a good agreement between the measured and the calculated data until the loop seal clearing (LSC). It was found that the steam condensation was underpredicted in the calculations. This caused the calculated data after the LSC to differ from that of the measured data. The core rod surface temperature excursion around the occurrence of the LSC was not calculated. Overall, there was good qualitative agreement between the measured and the calculated data. The calculations, performed on the CRAY-YMP supercomputer, took over 60 h of CPU time for a transient of 51 min.