ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hungyuan B. Liu, Robert M. Brugger
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 151-156
Technical Paper | Fission Reactor | doi.org/10.13182/NT94-A35026
Articles are hosted by Taylor and Francis Online.
Convenient, economical epithermal neutron beams will be needed in the future for boron neutron capture therapy (BNCT). We studied two concepts for producing epithermal neutron beams with low-power reactors. The first design is a 100-kW reactor with a 235U fission plate placed outside the reflector region, plus an Al/Al2O3 moderator assembly. The beam, which is directed forward, delivers a flux of epithermal neutrons of 0.8 × 109 n/cm2·s and a fast neutron dose of 4.4 × 10−11 cGy·cm2/nepi. The second design is based on a slab reactor plus a similar Al/Al2O3 moderator assembly. With an operating power of 50 kW, the beam has an intensity of 1.4 × 109 n/cm2.s and a fast neutron dose of 4.6 × 10−11 cGy·cm2/nepi; this beam also is directed forward. These epithermal neutron beams should be acceptable for BNCT; a treatment could be completed in ∼1 h, and the fast neutron dose to the skin would not be the limiting dose. Such small reactors should be practicable in a hospital location.