ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Steven J. Manson, Dale E. Klein
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 379-386
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT94-A35020
Articles are hosted by Taylor and Francis Online.
Transportation of nuclear spent fuel is inevitable over the coming years. However, to ensure the safety of such transport, computational models must be established that are capable of evaluating the thermal characteristics of the containers in which spent fuel is shipped. In an effort to further the development of a satisfactory computational tool, researchers at The University of Texas at Austin have developed a numerical algorithm that utilizes a homogeneous equilibrium model to calculate the effects of two-phase water on the thermal performance of the containers. This model has been evaluated in preparation for its incorporation into TEXSAN, the Texas-Sandia thermal-hydraulic analysis program. In this study, a stream function vorticity formulation routine was employed in order to calculate single- and two-phase mass and energy transport in a simple driven cavity configuration. Furthermore, a simulation of boiling heat transfer and natural convection around an idealized hot wire was performed. The temperature, enthalpy, and velocity distributions were determined and compared favorably to experimental and numerical benchmark results. The stream function vorticity formulation of the homogeneous equilibrium model has thus been demonstrated to be a viable predictive tool, capable of analysis of two-phase multimode heat transfer. This establishes the potential for improved spent-fuel transportation analysis, which is required for ensuring the safety of shipping container designs.