ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Jayan K. George, Jagdeep B. Doshi
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 338-349
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35016
Articles are hosted by Taylor and Francis Online.
The pressure disturbance propagation through a weakly compressible medium, bound by rigid structure as well as material interfaces, has an important bearing on the safety analysis of liquid-metal-cooled fast breeder reactors. The analyses have been carried out using numerical algorithms based on Eulerian, Lagrangian, or mixed formulations. Even though the results obtained from these schemes compared well with the benchmark experimental results, certain drawbacks, such as less accurate treatment of material interfaces in the Eulerian schemes and mesh distortion in the La-grangian schemes, and so forth, remain. These drawbacks may be overcome by using a method of characteristics in two dimensions known as the near-characteristic method to solve the problem. The region of interest is discretized into Eulerian grids, and the flow parameters are obtained from the compatibility equations corresponding to the near characteristics generated from the grid points. The material interfaces are tracked explicitly, using the near-characteristic scheme. The scheme is used to analyze a typical core disruptive accident problem, and the results are compared with experimental results as well as those ob. tained using two other numerical schemes. Good agreement is observed among the results; indeed, the one-dimensional problem of exploding wire phenomena and the two-dimensional problem of core disruptive accident analysis validate the effectiveness of the scheme. The future extension of the present scheme will include fluid structure interaction and complex internal structures.