ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Mark T. Leonard
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 320-337
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35015
Articles are hosted by Taylor and Francis Online.
Several probabilistic risk assessments (PRAs) have identified containment loads accompanying reactor vessel failure as a major contributor to the probability of early containment failure during severe accidents. Two significant contributors to these loads are phenomena referred to as “steam spike” and “direct containment heating.” To date, direct application of experimental and analytical studies of these phenomena to boiling water reactors (BWRs) are constrained by two limitations: (a) they are based on applications of large, complex containment response analysis computer codes, for which values of many major input parameters are highly uncertain, or (b) they only address pressurized water reactor containment designs. Relatively simple, parametric models are developed which allow a PRA analyst to evaluate the range of conditions under which steam spike or direct containment heating may be important contributors to containment loads for postulated severe accidents in BWRs. The models have been applied to a representative BWR/4 Mark I containment design to illustrate calculated results.