ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Esko H. Tusa, Asko Paavola, Risto Harjula, Jukka Lehto
Nuclear Technology | Volume 107 | Number 3 | September 1994 | Pages 279-284
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT94-A35008
Articles are hosted by Taylor and Francis Online.
At the Loviisa Nuclear Power Station (NPS) all liquid waste, i.e., spent resins and evaporator concentrates, have been stored in a large tank storage facility. Dominating radionuclides in the evaporator concentrates have been 134Cs and 137Cs. By removing cesium from the waste, purified liquid can be released within licensed release limits, and cobalt as a second dominating nuclide is left in a small waste volume on the bottom of the tank. Since 1985, the use of inorganic hexacyanoferrate-based materials for purification of cesium has been studied. A full-scale system for cesium removal, called the IVO-CsTreat System, was constructed in 1990 to 1991. A method to produce the ion exchanger in granular form in industrial scale was developed, and the facility to produce it was constructed. The ion exchange material was produced in 1991, and the full-scale purification facility was commissioned at the Loviisa NPS in October 1991. In the test run, 253 m3 of concentrate was purified between October 31, 1991 and June 11, 1992 with three ion exchange columns, each with a volume of 8 ℓ. A volume reduction factor of over 10000 was achieved as the ratio of liquid and ion exchanger volume. The decontamination factor for cesium was ∼2000.