ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Doonyapong Wongsawaeng, Donald R. Olander
Nuclear Technology | Volume 146 | Number 3 | June 2004 | Pages 211-220
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT04-A3500
Articles are hosted by Taylor and Francis Online.
In light water reactors, a helium-filled gap between the fuel and the cladding accommodates fuel swelling and cladding creepdown. However, the low thermal conductivity of helium results in a large T over the gap before closure occurs. To remedy this situation, Wright et al. proposed the use of a liquid metal (LM) bond in the fuel-cladding gap. The LM (33 wt% each of lead, tin, and bismuth) was chosen for its low melting point (~120°C), its lack of chemical reactivity with UO2 and water, and its high thermal conductivity (~100 times that of He). The thermal resistance of the LM-bonded gap is nil.Prior to closure of a helium-bonded gap, the centerline fuel temperature can be hundreds of degrees hotter than that with an LM-bonded gap at the same linear heat rating. Since the diffusion of fission gas atoms depends strongly upon temperature, it is expected that with the high thermal conductivity pellet-cladding gap, the incubation time to fission gas release should be considerably delayed. A modified Booth Sphere model, which takes into account re-solution, is adopted. The amount of fission gas atoms collected at the grain boundary is calculated using realistic time-temperature histories taken from a recent U.S. Nuclear Regulatory Commission review. The saturation value of gas at the grain boundary proposed by Dowling to fission gas release is adopted. The results show that although the temperature in the LM-bonded case is substantially lower than the He-filled case when the gap is open, the temperatures in the two cases equalize when the gap vanishes. Correspondingly, the two cases exhibit a comparable amount of fission gas at the grain boundary. Calculated differences between the times to saturation with LM and He in the gap are as high as ~1 yr and as low as 1 to 2 days.