ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
Yoshiaki Oka, Tatjana Jevremovic, Sei-ichi Koshizuka
Nuclear Technology | Volume 107 | Number 1 | July 1994 | Pages 15-22
Technical Paper | Special on ANP ’92 Conference / Fission Reactor | doi.org/10.13182/NT94-A34994
Articles are hosted by Taylor and Francis Online.
Placing a thin hydrogenous moderator (ZrH1.7) layer between the seed and the blanket is very effective in reducing the sodium void reactivity of a liquid-metal fast breeder reactor (LMFBR). The void reactivity reduction is attributed to the decrease in neutron production and increase in neutron absorption in the blanket at voiding due to the slowing down of fast neutrons in the layer. This dominates the whole core neutron balance. The fixed hydrogenous layer concept is much more effective than the conventional uniform introduction of such moderator in a core. Furthermore, it does not seriously deteriorate the breeding capability. For realizing the negative sodium void reactivity in a large-sized core, the seeds should be divided by blankets with the layers. The conceptual design of a nonflat LMFBR core is presented for demonstrating the effectiveness of the layer. Negative void reactivity is realized in a radially heterogeneous core of 1000-MW(electric) class output. The active core is 2.9 m high. It is much taller than the conventional LMFBR core, which is ∼1 m high. A wide pitch-to-fuel diameter ratio was chosen so as not to increase the pressure drop in the core. The compound system doubling time is 12.5 yr.