ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Hiroshi Akie, Tadasumi Muromura, Hideki Takano, Shojiro Matsuura
Nuclear Technology | Volume 107 | Number 2 | August 1994 | Pages 182-192
Technical Paper | Fission Reactor | doi.org/10.13182/NT107-182
Articles are hosted by Taylor and Francis Online.
For the burning of plutonium derived from nuclear warheads, once-through type oxide fuels have been studied by considering their proliferation resistance and environmental safety as well as their technological backgrounds of fuel fabrication and reactors. From phase relations of ceramic materials and their chemical properties, it seems that a two-phase mixture of a fluorite-type phase and alumina has favorable characteristics as a once-through-type fuel of plutonium burning. It also seems that the fluorite-type phases such as thoria and fully stabilized zirconia are acceptable as host phases of plutonium because of high solid solubility of the actinide elements and fission products, irradiation stability, and chemical stability. The spent fuels finally obtained will become mineral-like waste forms, which could be buried under deep geological formations without further processing. From reactor burnup calculations with the use of the fuels, light water reactors (LWRs) with the larger volume ratio of moderator to fuel than 1.4, such as conventional LWRs, are considered to be suitable for the once-through plutonium burning. Furthermore, such LWRs can transmute nearly 99% of 239Pu and 85% of initial loaded weapons-grade plutonium. The quality of plutonium becomes completely poor in the spent fuels.