ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Hiroshi Akie, Tadasumi Muromura, Hideki Takano, Shojiro Matsuura
Nuclear Technology | Volume 107 | Number 2 | August 1994 | Pages 182-192
Technical Paper | Fission Reactor | doi.org/10.13182/NT107-182
Articles are hosted by Taylor and Francis Online.
For the burning of plutonium derived from nuclear warheads, once-through type oxide fuels have been studied by considering their proliferation resistance and environmental safety as well as their technological backgrounds of fuel fabrication and reactors. From phase relations of ceramic materials and their chemical properties, it seems that a two-phase mixture of a fluorite-type phase and alumina has favorable characteristics as a once-through-type fuel of plutonium burning. It also seems that the fluorite-type phases such as thoria and fully stabilized zirconia are acceptable as host phases of plutonium because of high solid solubility of the actinide elements and fission products, irradiation stability, and chemical stability. The spent fuels finally obtained will become mineral-like waste forms, which could be buried under deep geological formations without further processing. From reactor burnup calculations with the use of the fuels, light water reactors (LWRs) with the larger volume ratio of moderator to fuel than 1.4, such as conventional LWRs, are considered to be suitable for the once-through plutonium burning. Furthermore, such LWRs can transmute nearly 99% of 239Pu and 85% of initial loaded weapons-grade plutonium. The quality of plutonium becomes completely poor in the spent fuels.