ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Mansoor Siddique, Michael W. Golay, Mujid S. Kazimi
Nuclear Technology | Volume 106 | Number 2 | May 1994 | Pages 202-215
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34976
Articles are hosted by Taylor and Francis Online.
An analytical study was conducted to characterize the local condensation heat transfer coefficient of a vapor in the presence of a noncondensable gas, where the gas mixture is flowing downward inside a vertical tube. The two-phase heat transfer was analyzed using an annular flow pattern with a liquid film at the tube wall and a turbulent gas/vapor core. The liquid phase heat transfer was modeled as heat conduction across a falling film. The gas/vapor core was modeled using the analogy between heat and mass transfer. Emphasis was placed on including the effects of developing flow, condensate film roughness, and property variation in the gas phase. The predictions of the model were compared to the experimentally obtained data and reasonably good agreement was found. The results obtained show that for the same mass fraction of noncondensable gas, compared with air, hydrogen and helium have a more inhibiting effect on the heat transfer in that order, but for the same molar ratio, (a) air was found to be more inhibiting, and (b) the heat transfer characteristics of hydrogen/steam and helium/steam mixtures are nearly identical. The results also show that the effects of developing flow are negligible when the inlet flow is at high turbulent Reynolds numbers (Re > 10000). Also, the results show that the film roughness effects are negligible for gas mixtures with low Schmidt numbers (Sc <1.0).