ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS names 2026 Congressional Fellows
Kasper
Hayes
The American Nuclear Society has officially selected two of its members to serve as its 2026 Glenn T. Seaborg Congressional Science and Engineering Fellows. Alyssa Hayes and Benjamin Kasper will help the Society fulfill its strategic goal of enhancing nuclear policy by working in the halls of Congress, either in a congressional member’s personal office or with a committee, starting next January.
“The Congressional Fellowship program has put ANS in a unique position to provide significant technical assistance to Congress on nuclear science, energy, and technology, with great results,” said Congressional Fellowship Special Committee chair Harsh Desai, himself a former Congressional Fellow. “This once-in-a-lifetime professional development opportunity will allow them to learn the art of policymaking and potentially pursue it as part of their careers beyond the fellowship.”
Mansoor Siddique, Michael W. Golay, Mujid S. Kazimi
Nuclear Technology | Volume 106 | Number 2 | May 1994 | Pages 202-215
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34976
Articles are hosted by Taylor and Francis Online.
An analytical study was conducted to characterize the local condensation heat transfer coefficient of a vapor in the presence of a noncondensable gas, where the gas mixture is flowing downward inside a vertical tube. The two-phase heat transfer was analyzed using an annular flow pattern with a liquid film at the tube wall and a turbulent gas/vapor core. The liquid phase heat transfer was modeled as heat conduction across a falling film. The gas/vapor core was modeled using the analogy between heat and mass transfer. Emphasis was placed on including the effects of developing flow, condensate film roughness, and property variation in the gas phase. The predictions of the model were compared to the experimentally obtained data and reasonably good agreement was found. The results obtained show that for the same mass fraction of noncondensable gas, compared with air, hydrogen and helium have a more inhibiting effect on the heat transfer in that order, but for the same molar ratio, (a) air was found to be more inhibiting, and (b) the heat transfer characteristics of hydrogen/steam and helium/steam mixtures are nearly identical. The results also show that the effects of developing flow are negligible when the inlet flow is at high turbulent Reynolds numbers (Re > 10000). Also, the results show that the film roughness effects are negligible for gas mixtures with low Schmidt numbers (Sc <1.0).