ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Luis E. Herranz, Jesús Polo
Nuclear Technology | Volume 106 | Number 2 | May 1994 | Pages 168-176
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34973
Articles are hosted by Taylor and Francis Online.
The significance of iodine for source term quantification has been studied by investigating its chemical behavior under the prototypical conditions of a hypothetical severe accident within the containment. As a result, some computer codes were developed and their validation is currently under way. The loss-of-fluid test (LOFT) program was one of the most relevant research projects in the area of nuclear safety. Its last experiment, LP-FP-2, simulated a V-sequence. A great deal of information was recorded on the fission product release, transport, and deposition. A theoretical approach to the chemical behavior of iodine in the blowdown suppression tank (BST) of the LOFT facility was attempted with the IODE and IMPAIR-2/M codes. The comparison of the predictions with the existing experimental data led to the conclusion that the BST system behaved as a low-volatility system, with most of the iodine in the form of the soluble nonvolatile species iodide. Only a partial conversion to volatile molecular iodine was observed due to the presence of radiation. However, the intensity of the γ field was so weak that this transformation was not quantitatively meaningful.