ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Kazuo Minato, Hironobu Kikuchi, Kousaku Fukuda, Nobuyuki Suzuki, Hiroshi Tomimoto, Nobu Kitamura, Mitsunobu Kaneko
Nuclear Technology | Volume 106 | Number 3 | June 1994 | Pages 342-349
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT94-A34964
Articles are hosted by Taylor and Francis Online.
Internal flaws in the silicon carbide (SiC) coating of fuel particles have been characterized. The internal flaws of the SiC coating were seen as external discolored spots. The porous flaws formed circumferentially during SiC deposition. These flaws may have a harmful effect on the mechanical integrity and the diffusion barrier of the particle. The SiC coating experiments were performed under systematically selected conditions to study the mechanism of flaw formation. The most important factor influencing flaw formation was found to be the mode of particle fluidization. Internal flaws were eliminated from the particles fabricated in a mass-production coater by controlling particle fluidization.