ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Kune Y. Suh
Nuclear Technology | Volume 106 | Number 3 | June 1994 | Pages 274-291
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34958
Articles are hosted by Taylor and Francis Online.
A fast-running computational model has been developed that deals with the nuclear steam supply system heat sink as a two-dimensional slice of steel with its inner and outer surfaces subjected to different thermal and material boundary conditions imposed by such surrounding media as core material, steel layer, water, and gas. This model is generally applicable to two- or one-dimensional heat sinks in the process of heatup and cooldown including liquefaction and resolidification. The numerical model and its solution technique were validated against a set of well-defined initial and boundary value problems. The computer model was applied to analyzing the temperature response of the lower head in a pressurized water reactor large-break loss of coolant accident (LOCA) with ex-vessel cooling. It was of importance to properly account for radiative heat transfer between the two exposed surfaces of the heat sink and the debris bed in the lower plenum, incorporating the physically based view factors, and to allow the heat sink to melt and relocate to the lower plenum. The model was also applied to analyzing the thermal behavior of the lower head in a boiling water reactor large-break LOCA without ex-vessel cooling. It was indicated that the vessel lower head could undergo a noticeable ablation due to the decay power generated from the debris bed in the absence of external cooling. The computer model was demonstrated to produce consistent results for the applications of practical interest in the severe accident arena.