ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Randall D. Manteufel, Neil E. Todreas
Nuclear Technology | Volume 105 | Number 3 | March 1994 | Pages 421-440
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34941
Articles are hosted by Taylor and Francis Online.
An effective thermal conductivity (keff) and an edge thermal conductance (hedge) model are developed for the interior and edge regions of a spent-fuel assembly residing in an enclosure. The model includes conductive and radiative modes of heat transfer. Predictions using the proposed keff/hedge model are compared with five sets of experimental data for validation. The model is compared with predictions generated by the engine maintenance, assembly, and disassembly (E-MAD) and Wooton-Epstein correlations, which represent the state of the art in this field. The model is applied to a typical pressurized water reactor and a typical boiling water reactor spent fuel assembly, and a set of both nonlinear and linear formulations of the model are derived. The proposed model is based on rigorous models of the governing heat transfer mechanisms and can be applied to a large range of assembly and enclosure types, enclosure temperatures, and assembly decay heat values. The proposed model is more accurate than comparable lumped correlations and is more amenable for simple, repetitive design applications than other detailed numerical models.