ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Curt M. Betts, Mark R. Galvin, Janet R. Green,† V. Melvin Guymon, Stephen M. Slater,‡, Andrew C. Klein
Nuclear Technology | Volume 105 | Number 3 | March 1994 | Pages 395-410
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34939
Articles are hosted by Taylor and Francis Online.
Currently, no comprehensive mechanistic model for the two-phase flow through a swirl vane steam separator is available. Therefore, an attempt has been made to develop an analytical model, using fundamental fluid mechanics, which is capable of predicting separator performance over a wide range of conditions. The developed model subdivides a typical boiling water reactor swirl vane steam separator into four distinct regions: the standpipe region, the swirl vane region, the transition region, and the free vortex region. In each region, the vapor and liquid components are treated separately and the behavior of individual droplets is determined from the drag force induced by the vapor continuum. The analytical model is used to first determine the vapor velocities throughout the separator. The drag force on the droplets is then determined, and the droplets are tracked through the separator in order to determine the exit position of each droplet. Separator performance can then be determined from this final position in terms of the fraction of droplets removed from the flow stream. In order to assess the validity of this model, the computer code SEPARATOR was developed. Among other capabilities, the code is capable of determining separator performance in terms of carryover, carryunder, and exit quality. However, due to the simplicity of the single-phase fluid treatment of the vapor continuum and the lack of data related to the average droplet diameter for flows of this nature, the results are not of significant quantitative value. The investigation performed does, however, suggest that the developed methodology, upon refinement of the single-phase fluids treatment, will yield quantitatively accurate results for nearly all separator operating conditions of interest.