ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS names 2026 Congressional Fellows
Kasper
Hayes
The American Nuclear Society has officially selected two of its members to serve as its 2026 Glenn T. Seaborg Congressional Science and Engineering Fellows. Alyssa Hayes and Benjamin Kasper will help the Society fulfill its strategic goal of enhancing nuclear policy by working in the halls of Congress, either in a congressional member’s personal office or with a committee, starting next January.
“The Congressional Fellowship program has put ANS in a unique position to provide significant technical assistance to Congress on nuclear science, energy, and technology, with great results,” said Congressional Fellowship Special Committee chair Harsh Desai, himself a former Congressional Fellow. “This once-in-a-lifetime professional development opportunity will allow them to learn the art of policymaking and potentially pursue it as part of their careers beyond the fellowship.”
Curt M. Betts, Mark R. Galvin, Janet R. Green,† V. Melvin Guymon, Stephen M. Slater,‡, Andrew C. Klein
Nuclear Technology | Volume 105 | Number 3 | March 1994 | Pages 395-410
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34939
Articles are hosted by Taylor and Francis Online.
Currently, no comprehensive mechanistic model for the two-phase flow through a swirl vane steam separator is available. Therefore, an attempt has been made to develop an analytical model, using fundamental fluid mechanics, which is capable of predicting separator performance over a wide range of conditions. The developed model subdivides a typical boiling water reactor swirl vane steam separator into four distinct regions: the standpipe region, the swirl vane region, the transition region, and the free vortex region. In each region, the vapor and liquid components are treated separately and the behavior of individual droplets is determined from the drag force induced by the vapor continuum. The analytical model is used to first determine the vapor velocities throughout the separator. The drag force on the droplets is then determined, and the droplets are tracked through the separator in order to determine the exit position of each droplet. Separator performance can then be determined from this final position in terms of the fraction of droplets removed from the flow stream. In order to assess the validity of this model, the computer code SEPARATOR was developed. Among other capabilities, the code is capable of determining separator performance in terms of carryover, carryunder, and exit quality. However, due to the simplicity of the single-phase fluid treatment of the vapor continuum and the lack of data related to the average droplet diameter for flows of this nature, the results are not of significant quantitative value. The investigation performed does, however, suggest that the developed methodology, upon refinement of the single-phase fluids treatment, will yield quantitatively accurate results for nearly all separator operating conditions of interest.