ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Brent J. Lewis, Anne C. Harnden-Gillis, Leslie G. I. Bennett
Nuclear Technology | Volume 105 | Number 3 | March 1994 | Pages 366-380
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT94-A34937
Articles are hosted by Taylor and Francis Online.
Increasing, but still low, radiation fields due to a release of fission products have been observed in the light-water-filled reactor container of SLOWPOKE-2 reactors fueled with a highly enriched uranium alloy. To investigate this phenomenon, samples of water coolant and headspace gas from the reactor container have been examined by gamma spectroscopy methods for several reactors with various burnup. A model has been developed to describe the kinetic behavior of the activity concentrations of the short-lived iodine and noble gas species in the reactor container water, and the noble gas concentrations in the reactor container headspace. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line of the fuel elements that originated at the time of fuel fabrication. The fission product release analysis is consistent with observations from an underwater visual examination of a high-burnup core and a metallographic examination of archived fuel elements.