ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS names 2026 Congressional Fellows
Kasper
Hayes
The American Nuclear Society has officially selected two of its members to serve as its 2026 Glenn T. Seaborg Congressional Science and Engineering Fellows. Alyssa Hayes and Benjamin Kasper will help the Society fulfill its strategic goal of enhancing nuclear policy by working in the halls of Congress, either in a congressional member’s personal office or with a committee, starting next January.
“The Congressional Fellowship program has put ANS in a unique position to provide significant technical assistance to Congress on nuclear science, energy, and technology, with great results,” said Congressional Fellowship Special Committee chair Harsh Desai, himself a former Congressional Fellow. “This once-in-a-lifetime professional development opportunity will allow them to learn the art of policymaking and potentially pursue it as part of their careers beyond the fellowship.”
Ulf Tveten
Nuclear Technology | Volume 105 | Number 3 | March 1994 | Pages 322-333
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34933
Articles are hosted by Taylor and Francis Online.
This paper describes a task performed for the U. S. Nuclear Regulatory Commission (NRC), consisting of using post-Chernobyl data from Norway to verify or find areas for possible improvement in the chronic exposure pathway models utilized in the NRC’s program for probabilistic risk analysis, level 3, of the MELCOR accident consequence code system (MACCS), developed at Sandia National Laboratories, Albuquerque, New Mexico. Because of unfortunate combinations of weather conditions, the levels of Chernobyl fallout in parts of Norway were quite high, with large areas contaminated to more than 100 kBq/m2 of radioactive cesium. Approximately 6% of the total amount of radioactive cesium released from Chernobyl is deposited on Norwegian territory, according to a countrywide survey performed by the Norwegian National Institute for Radiation Hygiene. Accordingly, a very large monitoring effort was carried out in Norway, and some of the results of this effort have provided important new insights into the ways in which radioactive cesium behaves in the environment. In addition to collection and evaluation of post-Chernobyl monitoring results, some experiments were also performed as part of the task. Some experiments performed pre-Chernobyl were also relevant, and some conclusions could be drawn from these. All the long-term exposure pathways routinely treated by MACCS were considered. The Chernobyl accident brought no new insights to the cloudshine exposure pathway, but understanding of the groundshine, soil-grass-milk, soil-grass-beef, and the freshwater exposure pathways was considerably improved. Much new valuable information on exposure pathways not routinely included in MACCS has also been gathered, but this aspect is not discussed in this paper. In most connections, the data available show the models and data in MACCS to be appropriate. A few areas where the data indicate that the MACCS approach is inadequate are, however, also pointed out in the paper. This concerns in particular root uptake to grass from soil and the freshwater exposure pathways. Both of these areas ought to be revised. It is also pointed out that MACCS’ inability in the present version to distinguish between chemical forms of cesium with different bioavailability may lead to conservative results. The task is limited to radioactive cesium, which proved to be by far the most important post-Chernobyl radionuclide in the Norwegian area.