ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS names 2026 Congressional Fellows
Kasper
Hayes
The American Nuclear Society has officially selected two of its members to serve as its 2026 Glenn T. Seaborg Congressional Science and Engineering Fellows. Alyssa Hayes and Benjamin Kasper will help the Society fulfill its strategic goal of enhancing nuclear policy by working in the halls of Congress, either in a congressional member’s personal office or with a committee, starting next January.
“The Congressional Fellowship program has put ANS in a unique position to provide significant technical assistance to Congress on nuclear science, energy, and technology, with great results,” said Congressional Fellowship Special Committee chair Harsh Desai, himself a former Congressional Fellow. “This once-in-a-lifetime professional development opportunity will allow them to learn the art of policymaking and potentially pursue it as part of their careers beyond the fellowship.”
Thomas A. Buscheck, John J. Nitao, Dale G. Wilder
Nuclear Technology | Volume 104 | Number 3 | December 1993 | Pages 449-471
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34902
Articles are hosted by Taylor and Francis Online.
In situ heater tests are needed to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loadings and to support the validation of related numerical and conceptual models. Hypothesis testing can help focus characterization, modeling, and testing activities required to support model validation and build robust site suitability and licensing arguments. In situ heater tests can address the following hypotheses: (a) repository-driven heat flow is dominated by heat conduction; (b) a region of above-boiling temperatures surrounding the repository corresponds to the absence of liquid water at the waste package environment; (c) fracture density and connectivity are sufficient to promote rock dryout due to boiling and condensate shedding; (d) rewetting of the dryout zone lags significantly behind the end of the boiling period; and (e) large-scale, buoyant, gas-phase convection may eventually dominate moisture movement in the unsaturated zone. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. The trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle are examined, including heating (boiling and dryout) and cooldown (rewetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6 to 7 yr (including 4 yr of full-power heating) is required. The parallel use of highly accelerated, shorter duration tests may also provide timely information for the license application.