ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Thomas A. Buscheck, John J. Nitao
Nuclear Technology | Volume 104 | Number 3 | December 1993 | Pages 418-448
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34901
Articles are hosted by Taylor and Francis Online.
To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Analyses have demonstrated that (a) the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years and (b) the only significant source of liquid water is from nonequilibrium fracture flow, driven either by meteoric sources or by the condensation of repository-heat-driven flow of water vapor. For sub-boiling conditions, the infiltration of meteoric water and condensate drainage are controlled by the highly heterogeneous distribution of hydrological properties, while for above-boiling conditions, they are largely determined thermodynamically. In a concept called the “extended-dry repository,” the heat of radioactive decay generates a region of above-boiling temperatures around the repository, thereby extending the time before liquid water can contact a waste package. It is also found that the magnitude of repository-heat-driven, buoyant, liquid-phase convection in the saturated zone is more dependent on the total mass of emplaced spent nuclear fuel (SNF) than on the details of SNF emplacement, such as the areal power density (expressed in kilowatts per acre) or SNF age.