ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Shih-Hai Li, Shean-Lang Chiou
Nuclear Technology | Volume 104 | Number 2 | November 1993 | Pages 258-271
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34889
Articles are hosted by Taylor and Francis Online.
An analytical solution based on Laplace transforms is developed for the problem of radionuclide transport along a discrete planar fracture in porous rock. The solution takes into account advective transport in the fracture, longitudinal hydrodynamic dispersion in the fracture along the fracture axis, molecular diffusion from the fracture into the rock matrix, sorption within the rock matrix, sorption onto the surface of the fracture, and radioactive decay. The longitudinaldispersion-free solution, which is of closed form, is also reported. The initial radionuclide concentrations in both the fracture and the rock matrix are assumed to be zero. A kinetic solubility-limited dissolution model is used as the inlet boundary condition. In addition to the radionuclide concentrations in both the fracture and the rock matrix, the mass flux in fracture is provided. The analytical solution is in the form of a single integral that is evaluated by a Gauss-Legendre quadrature for each point in space and time. As the dissolution rate constant approaches infinity, the inlet boundary condition of the kinetic solubility-limited dissolution model can be replaced by the boundary condition of constant concentration, as is shown by numerical illustration. Restated, the constant concentration boundary condition represents a conservative upper limit to the solubility-limited dissolution rate. Diffusion into the rock matrix enhances the dissolution rate, even though it can also enhance the retardation of solute transport in fracture. This analytical solution has been verified by the results generated from a numerical inversion of the Laplace transforms. The agreement is excellent.