ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Dale T. Peters, Konrad J. A. Kundig, David F. Medley, Paul A. Enders
Nuclear Technology | Volume 104 | Number 2 | November 1993 | Pages 219-232
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34885
Articles are hosted by Taylor and Francis Online.
Copper and aluminum bronze have been shown to exhibit a high degree of kinetic stability in anticipated repository environments, including mildly oxidizing conditions under high gamma fields. The nature of the thermodynamic and kinetic stability of the metals is discussed. It is proposed that a robust, composite waste container composed of a copper mantle surrounding an inner shell of high-strength aluminum bronze would make the best use of the corrosion- and creep-related properties of the metals. Several designs and closure techniques are suggested. A bimetallic, centrifugally cast cylinder with a diameter and wall thickness appropriate to a high-level waste burial container has been produced. The advantages of the bimetallic casting are discussed, as are the potential multifunctional applications of composite containers of this type. Suggestions for future work are proposed. Creation of an“engineered analog” is suggested as an additional redundant safeguard in the proposed repository.