ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS names 2026 Congressional Fellows
Kasper
Hayes
The American Nuclear Society has officially selected two of its members to serve as its 2026 Glenn T. Seaborg Congressional Science and Engineering Fellows. Alyssa Hayes and Benjamin Kasper will help the Society fulfill its strategic goal of enhancing nuclear policy by working in the halls of Congress, either in a congressional member’s personal office or with a committee, starting next January.
“The Congressional Fellowship program has put ANS in a unique position to provide significant technical assistance to Congress on nuclear science, energy, and technology, with great results,” said Congressional Fellowship Special Committee chair Harsh Desai, himself a former Congressional Fellow. “This once-in-a-lifetime professional development opportunity will allow them to learn the art of policymaking and potentially pursue it as part of their careers beyond the fellowship.”
Xiangdong Feng, John K. Bates, Edgar C. Buck, Charles R. Bradley, Meiling Gong
Nuclear Technology | Volume 104 | Number 2 | November 1993 | Pages 193-206
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34883
Articles are hosted by Taylor and Francis Online.
The behavior of radioactive sludge-based and simulated nuclear waste glasses has been compared by long-term testing of radioactive and simulated compositions of Savannah River Laboratory 165, 131, and 200 glasses. Static tests at glass surface area-to-solution volume (SA/V) ratios of 340 and 2000 m-1 up to 720 days show little difference in reactivity between radioactive and simulated waste glasses. The same leach trends are observed for both glass types. The differences in reactivity at an SA/V of 2000 m-1 or below are not large enough to alter the order of glass durability for the different compositions nor to change the controlling glass dissolution processes. The small differences in reactivity between fully radioactive and simulated glasses can reasonably be explained if the controlling reaction process and leachate pH values are accounted for. However, at an SA/V of 20000 m-1, the simulated nuclear waste glass, 200S, leaches faster than the corresponding radioactive glass by a factor of 40 within 1 yr. The accelerated reaction with the simulated glass 200S is associated with the formation of crystalline phases such as clinoptilolite (or K-feldspar), and a pH excursion. The radiation field generated by the fully radioactive glass reduces the solution pH, which, in turn, may retard the onset of the increased reaction rate. This result suggests that the fully radioactive nuclear waste glass 200R may be substantially more durable than the simulated 200S glass if the lower pH in the 200R leachate can be sustained. Meaningful comparison tests between radioactive and simulated nuclear waste glasses should include long-term and high SA/V tests.