ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Dwayne A. Chesnut
Nuclear Technology | Volume 104 | Number 2 | November 1993 | Pages 182-192
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34882
Articles are hosted by Taylor and Francis Online.
Waste packages for a U.S. nuclear waste repository are required to provide reasonable assurance of maintaining substantially complete containment of radionuclides for 300 to 1000yr after closure and of permitting only controlled release of radionuclides for 10000 yr. The waiting time to failure for complex failure processes affecting engineered or manufactured systems is often found to be an exponentially distributed random variable. Assuming that this simple distribution can be used to describe the failures of hypothetical singlebarrier waste packages, bounding calculations show that the mean time to failure would have to be >107 yr in order to provide reasonable assurance of meeting this requirement. If such a waste package could be manufactured, it would be practically impossible to demonstrate its performance within the repository preclosure time of 40 yr. With two independent barriers, each would need to have a mean time to failure of only 105 yr to provide the same reliability, illustrating that the use of redundant independent barriers is the key to both achieving and demonstrating regulatory compliance. However, even this demonstration would require testing tens of thousands of two-barrier systems for several decades. As more barriers are added, the mean lifetime required of each individual barrier decreases, and the demonstration of performance becomes more feasible, although still requiring extensive testing and observation during the preclosure period for performance confirmation. In any case, the results illustrate that neither the engineered barrier system nor the geologic barrier system alone is likely to provide the required degree of assurance of repository safety.