ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Paul McConnell, Richard Salzbrenner, Gerald W. Wellman, Ken B. Sorenson
Nuclear Technology | Volume 104 | Number 2 | November 1993 | Pages 171-181
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34881
Articles are hosted by Taylor and Francis Online.
Depleted uranium (DU) alloys are currently used for gamma-ray shielding in casks and as shielding blocks. For the transport cask application, a significant weight and dimensional penalty exists when using the DU solely for shielding. If credit could be taken for the structural use of the DU for containment in a transport cask, greater payloads may be realized. Mechanical property measurements of several uranium alloys and finite element analyses of prototype transport casks assumed to be constructed, in part, from selected uranium materials were performed to evaluate the potential for the use of DU alloys for cask containment. These data and analyses support the concept of the use of DU alloys for the containment function even under hypothetical accident conditions. A conclusion is that the properties of certain DU alloys are therefore sufficient to warrant further consideration of the material for this purpose.