ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Si Y. Lee
Nuclear Technology | Volume 104 | Number 1 | October 1993 | Pages 64-75
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT93-A34870
Articles are hosted by Taylor and Francis Online.
The upper limit to countercurrent flow, namely, flooding, is important to analyze the reactor coolability during an emergency cooling system (ECS) phase as a result of a large-break loss-of-coolant accident (LOCA) such as a double-ended guillotine break in the Savannah River Site (SRS) reactor system. During normal operation, the reactor coolant system utilizes downward flow through concentric heated tubes with ribs, which subdivide each annular channel into four subchannels. In this paper, a new flooding correlation has been developed based on the analytical models and literature data for adiabatic, steady-state, one-dimensional, air-water flow to predict flooding phenomenon in the SRS reactor assembly channel, which may have a countercurrent air-water flow pattern during the ECS phase. In addition, the correlation was benchmarked against the experimental data conducted under the Oak Ridge National Laboratory multislit channel, which is close to the SRS assembly geometry. Furthermore, the correlation has also been used as a constitutive relationship in a new two-component two-phase thermal-hydraulics code FLO WTRAN-TF, which has been developed for a detailed analysis of SRS reactor assembly behavior during LOCA scenarios. Finally, the flooding correlation was applied to the predictions of critical heat flux, and the results were compared with the data taken by the SRS heat transfer laboratory under a single annular channel with ribs and a multiannular prototypic test rig.