ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Si Y. Lee
Nuclear Technology | Volume 104 | Number 1 | October 1993 | Pages 64-75
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT93-A34870
Articles are hosted by Taylor and Francis Online.
The upper limit to countercurrent flow, namely, flooding, is important to analyze the reactor coolability during an emergency cooling system (ECS) phase as a result of a large-break loss-of-coolant accident (LOCA) such as a double-ended guillotine break in the Savannah River Site (SRS) reactor system. During normal operation, the reactor coolant system utilizes downward flow through concentric heated tubes with ribs, which subdivide each annular channel into four subchannels. In this paper, a new flooding correlation has been developed based on the analytical models and literature data for adiabatic, steady-state, one-dimensional, air-water flow to predict flooding phenomenon in the SRS reactor assembly channel, which may have a countercurrent air-water flow pattern during the ECS phase. In addition, the correlation was benchmarked against the experimental data conducted under the Oak Ridge National Laboratory multislit channel, which is close to the SRS assembly geometry. Furthermore, the correlation has also been used as a constitutive relationship in a new two-component two-phase thermal-hydraulics code FLO WTRAN-TF, which has been developed for a detailed analysis of SRS reactor assembly behavior during LOCA scenarios. Finally, the flooding correlation was applied to the predictions of critical heat flux, and the results were compared with the data taken by the SRS heat transfer laboratory under a single annular channel with ribs and a multiannular prototypic test rig.